微分方程团队成员—朱孟坤

发布者:数学与统计学院发布时间:2023-12-29浏览次数:404

一、基本情况

朱孟坤,副教授,硕士生导师,澳门大学哲学(数学)博士,博士后。主要从事随机矩阵理论、正交多项式、Painlevé方程以及Heun方程的研究,近几年以第一或通讯作者在Proc. AMSAMLAMCMPAGJMP以及《数学进展》等期刊上发表论文30余篇,其中SCI收录20余篇,中文核心3篇;目前主持山东省高等学校“青创科技支持计划”项目、国家自然科学基金青年项目、山东省自然科学基金青年项目和校科教产融合试点工程项目各1项,参与广东省自然科学基金面上项目1项。

二、学术兼职

1、美国《数学评论》(MathSciNet)评论员,编号: 141426;

2、德国《数学文摘》(zbMATH)评论员,编号: 18957;

3、期刊《Journal of Nuclear Science and Technology Updates》编委;

4、期刊《American Journal of Applied Mathematics》编委;

三、部分代表性论文(*代表通讯作者)

  1. D. Wang, M. Zhu*. Discrete, continuous and asymptotic for a modified singularly Gaussian Unitary Ensemble and the smallest eigenvalue of its large Hankel matrices. Math. Phys. Anal. Geom.27 (2024) 5.

  2. Y. Wang, M. Zhu*, and Y. Chen. The smallest eigenvalue of the ill-conditioned Hankel matrices associated with a semi-classical Hermite weight. Proc. Amer. Math. Soc. 151 (2023), 5345-5352. (SCI)

  3. D. Wang, M. Zhu* and Y. Chen. The smallest eigenvalue of large Hankel matrices associated with a singularly perturbed Gaussian weight. Proc. Amer. Math. Soc., 150(1) (2022): 153-160. (SCI)

  4. M. Zhu, C. Li and Y. Chen. Painlevé V for a Jacobi unitary ensemble with random singularities. Appl. Math. Lett., 120 (2021): 107242. (SCI)

  5. M. Zhu, D. Wang and Y. Chen. Painlevé IV, form, and the deformed Hermite unitary ensembles. J. Math. Phys., 62(3) (2021): 033508. (SCI)

  6. M. Zhu, Y. Chen and C. Li. The smallest eigenvalue of large Hankel matrices generated by a singularly perturbed Laguerre weight. J. Math. Phys., 61 (2020): 073502. (SCI)

  7. M. Zhu and Y. Chen. On properties of a deformed Freud weight. Random Matrices: Theor. Appl., 8 (2019): 1950004. (SCI)

  8. M. Zhu, N. Emmart, Y. Chen and C. Weems. The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight. Math. Meth. Appl. Sci., 42 (2019): 3272-3288. (SCI)

  9. M. Zhu* and M. Ou. Global Strong Solutions to the 3D Incompressible Heat-Conducting Magnetohydrodynamic Flows. Math. Phys. Anal. Geom., 22 (2019): 8. (SCI)

  10. M. Zhu, Y. Chen, N. Emmart and C. Weems. The smallest eigenvalue of large Hankel matrices. Appl. Math. Comput., 334 (2018): 375-387. (SCI)