微分方程团队负责人—王晓丽

发布者:hhxx发布时间:2023-12-29浏览次数:296

王晓丽,教授,硕士生导师。于20042017年分别获大连理工大学计算数学和首都师范大学数学物理的硕士、博士学位。20158月至20162月访问美国杜克大学数学系Stephanos Venakides教授。近几年主要从事无穷维代数与可积系统、非线性偏微分方程孤立波解的构造、深度学习等方面的研究工作。主持国家自然科学基金青年基金1项,参与国家级课题3项、省部级课题3项,获得山东省高等学校科学技术二等奖2项。近五年在JDENonl.AnalysisZAMPPhysica D等国际学术期刊上发表SCI论文12篇,其中2篇论文入选ESI高被引论文。

 

研究方向:非线性偏微分方程求解、深度学习

 

承担科研项目情况

1. 国家自然科学基金面上基金项目,12275017,混合色散与非线性效应均衡调控光孤子动力学研究,2023/01-2026/1255万元,2/4、负责人

2. 国家自然科学基金青年基金项目,11801292,基于Lax 3-对的广义KP约束系统的研究,2019/01-2021/1222万元,1/7、负责人

 

部分代表性论文

[1]     Xiaoli Wang, Zekang Wu, Wenjing Han and Zhenya Yan, Deep learning data-driven multi-soliton dynamics and parameters discovery for the fifth-order Kaup–Kuperschmidt equation, Physica D, 454(2023) 133862.

[2]     Chunhui Li, Mengkun Zhu, Dan Wang, Jinyu Zhang and Xiaoli Wang(通讯作者), Integrability of a generalized (2+1)-dimensional soliton equation via Bell polynomials, Z. Angew. Math. Phys. (2023) 74:62.

[3]     Deng-Shan Wang, Bo-Ling Guo, Xiao-Li Wang, Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions, J. Differential Equations, 266 (2019) 5209-5253.ESI高被引)

[4]     Deng-Shan Wang, Xiao-Li Wang, Long-time asymptotics and the bright N-soliton solutions of the Kundu-Eckhaus equation via the Riemann-Hilbert approach, Nonlinear Analysis: Real World Applications, 41 (2018) 334–361. ESI高被引)

[5]     Min-Ru Chen, Shi-Kun Wang, Xiao-Li Wang, Ke Wu, Wei-Zhong Zhao, On W1+ 3-algebra and Integrable System, Nuclear Physics B, 2015, 891: 655-675.

[6]     Xiao-Li Wang(通讯作者), Min-Ru Chen, Jian-Qin Mei, Zhao-Wen Yan, W1+ 3-algebra and the higher-order nonlinear Schrödinger equations in optical fiber, Commun Nonlinear Sci Numer Simulat, 65(2018) 161-172.

[7]     Xiao-Li Wang(通讯作者), Jian-Qin Mei, On the Generalized KdV Hierarchy and Boussinesq Hierarchy with Lax Triple, Journal of Nonlinear Mathematical Physics, 28(3), 2021, 337-343.

[8]     Min-Ru Chen, Ying Chen, Zhao-Wen Yan, Jian-Qin Mei, Xiao-Li Wang(通讯作者), A 3-Lie algebra and the dKP Hierarchy, Journal of Nonlinear Mathematical Physics, 26(1),  2019, 91-97.

[9]     Xiao-Li Wang, Jian-Qin Mei, Min-Li Li, Zhao-Wen Yan, On generalized Lax equations of the Lax triple of the BKP and CKP hierarchies, Journal of Nonlinear Mathematical Physics, 2017, 24: 171-182.

[10]   Xiao-Li Wang, Lu Yu, Yan-Xin Yang, Min-Ru Chen, On generalized Lax equation of the Lax triple of KP Hierarchy, Journal of Nonlinear Mathematical Physics, 2015, 22: 194-203.

[11]   Xiao-Li Wang(通讯作者), Zhen-Hua Wu, New Exact Solutions and Dynamics in (3+1)-Dimensional Gross-Pitaevskii Equation with Repulsive Harmonic Potential, Commun. Theor. Phys., 2014, 61: 583-589.

[12]   Zhao-Wen Yan, Xiao-Li Wang, Min-Li Li, Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions, Chin. Phys. Lett., 2017, 34: 070203.

[13]   Bian Gao, Ji-Feng Cui, Xiao-Li Wang, Zhao-Wen Yan, (2 + 1)-Dimensional generalized third-order Heisenberg supermagnet model, International Journal of Geometric Methods in Modern Physics, Vol. 15 (2018), 1850185.

[14]   Chong Li, Lin-Jie Shi, Xiao-Li Wang, Na Wang and Min-Ru Chen, On generalized Lax equation of the Lax triple of mKP hierarchy, International Journal of Modern Physics A, 35, 20 (2020), 2050099.

[15]   Yi Yang, Xiao-Li Wang and Ji-Peng Cheng, Some results of the BKP hierarchy as the Kupershmidt reduction of the modified KP hierarchy, Modern Physics Letters B, 34, 1 (2020), 2050433.

[16]   Zhi-Qiang Li, Shou-Fu Tian, Jin-Jie Yang and Xiao-Li Wang, Riemann-Hilbert Approach and Soliton Solutions of the Higher-Order Dispersive Nonlinear Schrödinger Equations with Single and Double Poles, East Asian Journal on Applied Mathematics, 11, 2 (2021), 369-388.

[17]   Jin-Yu Zhang, Men-Kun Zhu, Shu-Li Liu, Chun-Hui Li, Xiao-Li Wang(通讯作者), Bäcklund transformation, Lax pair, infinite conservation laws and exact solutions to a generalized (2 + 1)-dimensional equation, International Journal of Modern Physics B, 36, 23(2022), 2250146.

 

科研获奖

1.       王晓丽、刘晓薇,非线性偏微分方程精确解及其长时间渐近性研究,山东省本科高等学校科学技术奖二等奖,2020.12

2.       刘晓薇、王晓丽,反应扩散方程及薛定谔方程研究,山东省本科高等学校科学技术奖二等奖,2018.10